


 Memory corruption vulnerability exposure 
can be mitigated through memory hardening 
practices

 OS vendors have a unique opportunity to 
fight memory corruption vulnerabilities 
through hardening the memory manager

 Microsoft is raising the technology bar to 
combat external threats



 Microsoft is raising the technology bar to 
combat external threats

 New features you’ve probably heard about
 Privilege Separation
 IE Protected Mode
 Kernel Patch Protection
 Code Integrity

 New features we are covering today
 Address Space Layout Randomization
 Windows Vista Dynamic Memory Allocator



Red Hat Enterprise Linux
 Images 

▪ Section reordering
▪ DLL randomization
▪ EXE randomization*

 Stack
▪ Protected control flow data*
▪ Local variable protection*
▪ Segment randomization
▪ Non-executable

 Heap
▪ Segment randomization
▪ Non-executable



OpenBSD
 Images

▪ DLL randomization
▪ Section reordering

 Stack
▪ Protected control flow data*
▪ Local variable protection
▪ Segment randomization
▪ Non-executable

 Heap
▪ Non-executable
▪ Segment randomization

Apple OS X
 Images

▪ No protection
 Stack

▪ No protection
 Heap

▪ No protection



Windows Vista
 Images 

▪ EXE randomization
▪ DLL randomization

 Stack
▪ Protected exception handlers
▪ Protected control flow data
▪ Local variable protection
▪ Segment randomization
▪ Non-executable

 Heap
▪ Protected heap management data
▪ Segment randomization
▪ Non-executable



A quick look at what you’ve already 
been exposed to:
 Stack Cookies (/GS)
 Heap Mitigations (XP SP2)
 Structured Exception Handling 

(SafeSEH) 
 Unhandled Exception Filter (MS06-051)
 Hardware DEP/NX



 New in Windows Vista
 Address Space Layout Randomization

▪ The History of ASLR
▪ Architectural Considerations
▪ Vista ASLR Technical Details
▪ Testing Methodology

 Dynamic Memory Allocator
▪ A Short Lesson in Heap Exploitation
▪ Improvements in Vista Heap Management
▪ Vista Dynamic Memory Allocator Internals
▪ Testing Methodology



Windows Vista ASLR is a technology 
that makes exploitation of a 
vulnerability a statistical problem

Address Space Layout 
Randomization allows for the 
relocation of memory mappings, 
making the a process’ address space 
layout unpredictable



 ASLR Theory
 Exploitation relies on prior knowledge of 

the memory layout of the targeted process 

 Published Research
 PaX Documentation

▪ PaX Team (http://pax.grsecurity.net/docs/aslr.txt)

 “On the Effectiveness of Address Space 
Layout Randomization” 
▪ Shacham, et al Stanford University



 Windows Vista Process Model
 Most applications are threaded

 Windows Vista Memory Management
 File mappings must align at 64k boundaries
 Shared mappings must be used to keep 

memory overhead low and preserve physical 
pages 

 Fragmentation of the address space must be 
avoided to allow for large allocations

 Supports hardware NX



 Image Mapping Randomization
 Random base address chosen for each 

image loaded once per boot
 8 bits of entropy 
 Fix-ups applied on page-in
 Images are mapped at the same 

location across processes
 99.6% Effective



Heap Randomization
 Random offset chosen for segment 

allocation using 64k alignment (5-bit 
entropy)

Stack Randomization
 Random offset chosen for segment 

allocation using 64k or 256k alignment. 
 Random offset within first half of the 

first page



Three pieces to the strategy
 Address Space Randomization
 Non-Executable Pages
 Service Restart Policy



Assumptions
 ASLR will only protect against remote 

exploitation
 ASLR requires NX to remain effective
 ASLR requires a limit on the number of 

exploitation attempts to remain effective



 Prior to Windows Vista, NX could be 
disabled in a process if PERMANENT 
flag was not set
 Loading a DLL that is not NX compatible

▪ No relocation information
▪ Loaded off removable media
▪ Open handle to a data mapping of the file

 Call NtSetInformationProcess with the 
MEM_EXECUTE_OPTION_ENABLE flag



 In Windows Vista, NX cannot be 
disabled once turned on for a 
process 

Most processes enable NX by default



Reducing the brute force space
 Code symmetry

▪ Each location shifts stack pointer 20 bytes

 Advanced return address location
▪ Emulation - EEREAP

kernel32+0xa1234: kernel32+0xb1234: user32+0x01234: advapi32+0x51234:
retn 16 pop ebx jz 0x12345678 lea esp, [esp+20]

pop ebp sub esp, 16 pop eax
retn 8 xor eax, eax call eax

ret



Partial overwrites
 Given known addresses at known 

offsets, partial overwrites yield 
predictable results without full 
knowledge of the address space layout

 With randomization in play, only 
bounded overflows can be used reliably 
for a single partial overwrite



Partial overwrites
 A single partial overwrite can be used to 

execute a payload or gain additional 
partial overwrites

D:\>partial
banner1: 0040100a banner2: 0040100f
hello world!

D:\>partial own
banner1: 0040100a banner2: 0040100f
owned!



Partial overwrites
 A single partial overwrite can be used to 

execute a payload or gain additional 
partial overwrites

int main(int argc, char **argv)
{

struct Object obj1;
char buf[32];
struct Object obj2;

…
printf("banner1: %08x banner2: %08x\n", banner1, banner2);
if(argv[1] != 0)

strncpy(buf, overflow, sizeof(overflow));
obj1.func();

return 0;
}
partial!main+0x5a:
004011ea 6a30            push    30h
004011ec 68b8114200      push    offset partial!overflow 
004011f1 8d4dc4          lea     ecx,[ebp-3Ch]
004011f4 51              push    ecx
004011f5 e816060000      call    partial!strncpy (00401810)
004011fa 83c40c          add     esp,0Ch



Partial overwrites
 A single partial overwrite can be used to 

execute a payload or gain additional 
partial overwrites0:000> bp 004011f5

0:000> g
banner1: 0040100a banner2: 0040100f
Breakpoint 0 hit
partial!main+0x65:
004011f5 e816060000      call    partial!strncpy (00401810)
0:000> dt obj1
Local var @ 0x12ff38 Type Object
   +0x000 next             : (null)
   +0x004 val              : 17895697
   +0x008 func             : 0x0040100a     partial!ILT+5(_banner1)+0
0:000> p
partial!main+0x6a:
004011fa 83c40c          add     esp,0Ch
0:000> dt obj1
Local var @ 0x12ff38 Type Object
   +0x000 next             : 0x41414141 Object
   +0x004 val              : 1094795585
   +0x008 func             : 0x0040100f     partial!ILT+10(_banner2)+0
0:000> g
owned!



 Information Leaking
 Uninitialized memory
 Use multiple attempts to gain address layout 

information that will get you code execution
 Additional image map locations can usually be inferred 

from one DLL address 
 Heap spraying reduces the need for accuracy
 Non-randomized data as arguments to functions 

 SharedUserData / ReadOnlySharedMemoryBase
 Non-relocatable resource dlls

 3rd party binaries



Software Development Process
 Create NX and ASLR compatible binaries
 Keep service restart policies in mind
 Ensure information leak bugs are 

addressed

Technology
 Use hardware that supports NX



The majority of currently exploited 
vulnerabilities in Microsoft products 
are overflows into heap memory

Heap exploitation relies on 
corrupting heap management data 
or attacking application data within 
the heap



Class objects contain a list of 
function pointers for each virtual 
function in the class called a 
vtable

class MyClass
{
public:
  MyClass();
  virtual ~MyClass();
  virtual MemberFunction();
  int MemberVariable;
};

Overwriting virtual function 
pointers is the simplest method of 
heap exploitation

VTable Overwrites



HEAP_ENTRY Overflow
 Scenario: Heap-based buffer overflow 

allows for writing into adjacent free 
heap block

 Attack: Overwrite FLINK and BLINK 
values and wait for HeapAlloc()

 Allows one or two 4-byte writes to 
controlled locations

mov dword ptr [ecx],eax
mov dword ptr [eax+4],ecx 

EAX = Flink, EBX = Blink

FREE HEAP BLOCK

_HEAP_ENTRY
 +0x000 Size
 +0x002 PreviousSize 
 +0x004 SmallTagIndex
 +0x005 Flags        
 +0x006 UnusedBytes 
 +0x007 SegmentIndex
_LIST_ENTRY
 +0x000 Flink    
 +0x004 Blink 



HEAP_ENTRY Overflow Mitigations in 
XP SP2

 List integrity checked during heap allocation

 8-bit Cookie
 Verified on allocation after 

removal from free list

LIST_ENTRY->Flink->Blink == LIST_ENTRY->Blink->Flink == LIST_ENTRY



HEAP_ENTRY Overflow Mitigations in 
XP SP2

 Defeated by attacking the lookaside list
 First heap overwrite takes control of Flink value in a 

free chunk with a lookaside list entry
 Allocation of the corrupted chunk puts the corrupt 

Flink value into the lookaside list
 Next HeapAlloc() of the same sized chunk will 

return the corrupted pointer



Heap segment randomization
HEAP_ENTRY integrity checks
Block entry randomization
Linked-list validation and 

substitution
Function pointer hardening
Terminate on Error



HEAP_ENTRY 
 Checksum for Size and Flags
 Size, Flags, Checksum, and PreviousSize 

are XOR’d against random value

Adds extra resilience against 
overflows into Flink and Blink values



Linked-lists
 Forward and backward pointer validation 

on unlink from any list

Lookaside lists 
 Replaced by Low-Fragmentation Heap



Function pointer hardening
 CommitRoutine and InterceptRoutine 

function pointers encoded
 CRT atexit() destructors encoded

Terminate on Error
 Opt-in API that cannot be disabled
 Ensures program cleanup does not 

utilize tainted heap structures



The Low-Fragmentation Heap is 
enabled by default in Windows Vista

The LFH replaces lookaside lists and 
is similar in nature
 128 buckets of static sized buffers
 Utilized for reoccuring allocations of the 

same size





 HEAP_ENTRY
 Doubly-linked list pointers are only validated when 

unlinking a node

InsertHeadList(ListHead, Entry)
 Flink = ListHead->Flink;
 Entry->Flink = Flink;
 Entry->Blink = ListHead;
 Flink->Blink = Entry;
 ListHead->Flink = Entry;

InsertTailList(ListHead, Entry)
 Blink = ListHead->Blink;
 Entry->Flink = ListHead;
 Entry->Blink = Blink;
 Blink->Flink = Entry;
 ListHead->Blink = Entry;

 Attack
 If list head pointers can be corrupted prior to 

an insert, the destination of a 4-byte write 
can be controlled

 The address of the free chunk being inserted 
into the list will be written to the corrupted 
linked list pointer

 Assessment
 Writing the address of the chunk may be only 

be helpful in limited circumstances
 It is difficult to find a list head to overwrite



 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in 

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static 

offset from first allocation in a segment
 If fake descriptor points at allocated 

memory, the next heap allocation will 
write a HEAP_UCR_DESCRIPTOR to a 
controlled address

 Assessment
 Limited control of the data written 

should effectively reduce this to a 
partial DWORD overwrite

 Increased complexity with multi-stage 
attack requires a high degree of control 
such as active scripting 

Unused

Allocated Heap

UCR Descriptor



 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in 

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static 

offset from first allocation in a segment
 If fake descriptor points at allocated 

memory, the next heap allocation will 
write a HEAP_UCR_DESCRIPTOR to a 
controlled address

 Assessment
 Limited control of the data written 

should effectively reduce this to a 
partial DWORD overwrite

 Increased complexity with multi-stage 
attack requires a high degree of control 
such as active scripting 

Unused

Allocated Heap

UCR Descriptor

Unused

Allocated Heap

 Overflow

UCR Descriptor

Function Ptr
  0x000a1234



 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in 

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static 

offset from first allocation in a segment
 If fake descriptor points at allocated 

memory, the next heap allocation will 
write a HEAP_UCR_DESCRIPTOR to a 
controlled address

 Assessment
 Limited control of the data written 

should effectively reduce this to a 
partial DWORD overwrite

 Increased complexity with multi-stage 
attack requires a high degree of control 
such as active scripting 

Unused

Allocated Heap

 Overflow

UCR Descriptor

_HEAP_UCR_DESCRIPTOR
   +0x000 ListEntry 
   +0x008 SegmentEntry
   +0x010 Address 
   +0x014 Size

Address points to the 
next reserved region 
and defines where a 
HEAP_UCR_DESCRIPTOR will
be written on the next
segment allocation

Function Ptr
  0x000a1234

 Ptr
XXXX



 _LFH_BLOCK_ZONE

 Attack
 New SubSegments are created at the 

location specified by the FreePointer in 
the LFH_BLOCK_ZONE structure

 Control of the FreePointer allows writing 
a HEAP_SUBSEGMENT to an arbitrary 
location

 Allocation size and number of 
allocations affect fields in the 
HEAP_SUBSEGMENT structure

 Assessment
 Limited control of the data written 

should effectively reduce this to a 
partial DWORD overwrite

 Increased complexity attack requires a 
high degree of control such as active 
scripting 

_LFH_BLOCK_ZONE
 +0x000 ListEntry
 +0x008 FreePointer
 +0x00c Limit

_HEAP_SUBSEGMENT
 +0x000 LocalInfo 
 +0x004 UserBlocks 
 +0x008 AggregateExchg 
 +0x010 BlockSize  
 +0x012 Flags       
 +0x014 BlockCount   
 +0x016 SizeIndex   
 +0x017 AffinityIndex  
 +0x010 Alignment  
 +0x018 SFreeListEntry 
 +0x01c Lock  



Default exploit mitigations
on popular client
operating systems



 OS vendors have a unique opportunity to fight 
memory corruption vulnerabilities through 
hardening the memory manager

 Microsoft is committed to closing the gap as much 
as possible and Windows Vista will have the 
strongest pro-active vulnerability defense of any 
Windows release

 These protections will continue to evolve to 
prevent wide-spread exploitation of software 
vulnerabilities

 Exploitation mitigations do not solve the problem 
of software vulnerabilities, but do provide a stop-
gap during times of exposure



 Thank you for attending

 Please contact us at 
switech@microsoft.com for feedback on 
Microsoft’s mitigation technologies

mailto:switech@microsoft.com
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