

 Memory corruption vulnerability exposure
can be mitigated through memory hardening
practices

 OS vendors have a unique opportunity to
fight memory corruption vulnerabilities
through hardening the memory manager

 Microsoft is raising the technology bar to
combat external threats

 Microsoft is raising the technology bar to
combat external threats

 New features you’ve probably heard about
 Privilege Separation
 IE Protected Mode
 Kernel Patch Protection
 Code Integrity

 New features we are covering today
 Address Space Layout Randomization
 Windows Vista Dynamic Memory Allocator

Red Hat Enterprise Linux
 Images

▪ Section reordering
▪ DLL randomization
▪ EXE randomization*

 Stack
▪ Protected control flow data*
▪ Local variable protection*
▪ Segment randomization
▪ Non-executable

 Heap
▪ Segment randomization
▪ Non-executable

OpenBSD
 Images

▪ DLL randomization
▪ Section reordering

 Stack
▪ Protected control flow data*
▪ Local variable protection
▪ Segment randomization
▪ Non-executable

 Heap
▪ Non-executable
▪ Segment randomization

Apple OS X
 Images

▪ No protection
 Stack

▪ No protection
 Heap

▪ No protection

Windows Vista
 Images

▪ EXE randomization
▪ DLL randomization

 Stack
▪ Protected exception handlers
▪ Protected control flow data
▪ Local variable protection
▪ Segment randomization
▪ Non-executable

 Heap
▪ Protected heap management data
▪ Segment randomization
▪ Non-executable

A quick look at what you’ve already
been exposed to:
 Stack Cookies (/GS)
 Heap Mitigations (XP SP2)
 Structured Exception Handling

(SafeSEH)
 Unhandled Exception Filter (MS06-051)
 Hardware DEP/NX

 New in Windows Vista
 Address Space Layout Randomization

▪ The History of ASLR
▪ Architectural Considerations
▪ Vista ASLR Technical Details
▪ Testing Methodology

 Dynamic Memory Allocator
▪ A Short Lesson in Heap Exploitation
▪ Improvements in Vista Heap Management
▪ Vista Dynamic Memory Allocator Internals
▪ Testing Methodology

Windows Vista ASLR is a technology
that makes exploitation of a
vulnerability a statistical problem

Address Space Layout
Randomization allows for the
relocation of memory mappings,
making the a process’ address space
layout unpredictable

 ASLR Theory
 Exploitation relies on prior knowledge of

the memory layout of the targeted process

 Published Research
 PaX Documentation

▪ PaX Team (http://pax.grsecurity.net/docs/aslr.txt)

 “On the Effectiveness of Address Space
Layout Randomization”
▪ Shacham, et al Stanford University

 Windows Vista Process Model
 Most applications are threaded

 Windows Vista Memory Management
 File mappings must align at 64k boundaries
 Shared mappings must be used to keep

memory overhead low and preserve physical
pages

 Fragmentation of the address space must be
avoided to allow for large allocations

 Supports hardware NX

 Image Mapping Randomization
 Random base address chosen for each

image loaded once per boot
 8 bits of entropy
 Fix-ups applied on page-in
 Images are mapped at the same

location across processes
 99.6% Effective

Heap Randomization
 Random offset chosen for segment

allocation using 64k alignment (5-bit
entropy)

Stack Randomization
 Random offset chosen for segment

allocation using 64k or 256k alignment.
 Random offset within first half of the

first page

Three pieces to the strategy
 Address Space Randomization
 Non-Executable Pages
 Service Restart Policy

Assumptions
 ASLR will only protect against remote

exploitation
 ASLR requires NX to remain effective
 ASLR requires a limit on the number of

exploitation attempts to remain effective

 Prior to Windows Vista, NX could be
disabled in a process if PERMANENT
flag was not set
 Loading a DLL that is not NX compatible

▪ No relocation information
▪ Loaded off removable media
▪ Open handle to a data mapping of the file

 Call NtSetInformationProcess with the
MEM_EXECUTE_OPTION_ENABLE flag

 In Windows Vista, NX cannot be
disabled once turned on for a
process

Most processes enable NX by default

Reducing the brute force space
 Code symmetry

▪ Each location shifts stack pointer 20 bytes

 Advanced return address location
▪ Emulation - EEREAP

kernel32+0xa1234: kernel32+0xb1234: user32+0x01234: advapi32+0x51234:
retn 16 pop ebx jz 0x12345678 lea esp, [esp+20]

pop ebp sub esp, 16 pop eax
retn 8 xor eax, eax call eax

ret

Partial overwrites
 Given known addresses at known

offsets, partial overwrites yield
predictable results without full
knowledge of the address space layout

 With randomization in play, only
bounded overflows can be used reliably
for a single partial overwrite

Partial overwrites
 A single partial overwrite can be used to

execute a payload or gain additional
partial overwrites

D:\>partial
banner1: 0040100a banner2: 0040100f
hello world!

D:\>partial own
banner1: 0040100a banner2: 0040100f
owned!

Partial overwrites
 A single partial overwrite can be used to

execute a payload or gain additional
partial overwrites

int main(int argc, char **argv)
{

struct Object obj1;
char buf[32];
struct Object obj2;

…
printf("banner1: %08x banner2: %08x\n", banner1, banner2);
if(argv[1] != 0)

strncpy(buf, overflow, sizeof(overflow));
obj1.func();

return 0;
}
partial!main+0x5a:
004011ea 6a30 push 30h
004011ec 68b8114200 push offset partial!overflow
004011f1 8d4dc4 lea ecx,[ebp-3Ch]
004011f4 51 push ecx
004011f5 e816060000 call partial!strncpy (00401810)
004011fa 83c40c add esp,0Ch

Partial overwrites
 A single partial overwrite can be used to

execute a payload or gain additional
partial overwrites0:000> bp 004011f5

0:000> g
banner1: 0040100a banner2: 0040100f
Breakpoint 0 hit
partial!main+0x65:
004011f5 e816060000 call partial!strncpy (00401810)
0:000> dt obj1
Local var @ 0x12ff38 Type Object
 +0x000 next : (null)
 +0x004 val : 17895697
 +0x008 func : 0x0040100a partial!ILT+5(_banner1)+0
0:000> p
partial!main+0x6a:
004011fa 83c40c add esp,0Ch
0:000> dt obj1
Local var @ 0x12ff38 Type Object
 +0x000 next : 0x41414141 Object
 +0x004 val : 1094795585
 +0x008 func : 0x0040100f partial!ILT+10(_banner2)+0
0:000> g
owned!

 Information Leaking
 Uninitialized memory
 Use multiple attempts to gain address layout

information that will get you code execution
 Additional image map locations can usually be inferred

from one DLL address
 Heap spraying reduces the need for accuracy
 Non-randomized data as arguments to functions

 SharedUserData / ReadOnlySharedMemoryBase
 Non-relocatable resource dlls

 3rd party binaries

Software Development Process
 Create NX and ASLR compatible binaries
 Keep service restart policies in mind
 Ensure information leak bugs are

addressed

Technology
 Use hardware that supports NX

The majority of currently exploited
vulnerabilities in Microsoft products
are overflows into heap memory

Heap exploitation relies on
corrupting heap management data
or attacking application data within
the heap

Class objects contain a list of
function pointers for each virtual
function in the class called a
vtable

class MyClass
{
public:
 MyClass();
 virtual ~MyClass();
 virtual MemberFunction();
 int MemberVariable;
};

Overwriting virtual function
pointers is the simplest method of
heap exploitation

VTable Overwrites

HEAP_ENTRY Overflow
 Scenario: Heap-based buffer overflow

allows for writing into adjacent free
heap block

 Attack: Overwrite FLINK and BLINK
values and wait for HeapAlloc()

 Allows one or two 4-byte writes to
controlled locations

mov dword ptr [ecx],eax
mov dword ptr [eax+4],ecx

EAX = Flink, EBX = Blink

FREE HEAP BLOCK

_HEAP_ENTRY
 +0x000 Size
 +0x002 PreviousSize
 +0x004 SmallTagIndex
 +0x005 Flags
 +0x006 UnusedBytes
 +0x007 SegmentIndex
_LIST_ENTRY
 +0x000 Flink
 +0x004 Blink

HEAP_ENTRY Overflow Mitigations in
XP SP2

 List integrity checked during heap allocation

 8-bit Cookie
 Verified on allocation after

removal from free list

LIST_ENTRY->Flink->Blink == LIST_ENTRY->Blink->Flink == LIST_ENTRY

HEAP_ENTRY Overflow Mitigations in
XP SP2

 Defeated by attacking the lookaside list
 First heap overwrite takes control of Flink value in a

free chunk with a lookaside list entry
 Allocation of the corrupted chunk puts the corrupt

Flink value into the lookaside list
 Next HeapAlloc() of the same sized chunk will

return the corrupted pointer

Heap segment randomization
HEAP_ENTRY integrity checks
Block entry randomization
Linked-list validation and

substitution
Function pointer hardening
Terminate on Error

HEAP_ENTRY
 Checksum for Size and Flags
 Size, Flags, Checksum, and PreviousSize

are XOR’d against random value

Adds extra resilience against
overflows into Flink and Blink values

Linked-lists
 Forward and backward pointer validation

on unlink from any list

Lookaside lists
 Replaced by Low-Fragmentation Heap

Function pointer hardening
 CommitRoutine and InterceptRoutine

function pointers encoded
 CRT atexit() destructors encoded

Terminate on Error
 Opt-in API that cannot be disabled
 Ensures program cleanup does not

utilize tainted heap structures

The Low-Fragmentation Heap is
enabled by default in Windows Vista

The LFH replaces lookaside lists and
is similar in nature
 128 buckets of static sized buffers
 Utilized for reoccuring allocations of the

same size

 HEAP_ENTRY
 Doubly-linked list pointers are only validated when

unlinking a node

InsertHeadList(ListHead, Entry)
 Flink = ListHead->Flink;
 Entry->Flink = Flink;
 Entry->Blink = ListHead;
 Flink->Blink = Entry;
 ListHead->Flink = Entry;

InsertTailList(ListHead, Entry)
 Blink = ListHead->Blink;
 Entry->Flink = ListHead;
 Entry->Blink = Blink;
 Blink->Flink = Entry;
 ListHead->Blink = Entry;

 Attack
 If list head pointers can be corrupted prior to

an insert, the destination of a 4-byte write
can be controlled

 The address of the free chunk being inserted
into the list will be written to the corrupted
linked list pointer

 Assessment
 Writing the address of the chunk may be only

be helpful in limited circumstances
 It is difficult to find a list head to overwrite

 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static

offset from first allocation in a segment
 If fake descriptor points at allocated

memory, the next heap allocation will
write a HEAP_UCR_DESCRIPTOR to a
controlled address

 Assessment
 Limited control of the data written

should effectively reduce this to a
partial DWORD overwrite

 Increased complexity with multi-stage
attack requires a high degree of control
such as active scripting

Unused

Allocated Heap

UCR Descriptor

 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static

offset from first allocation in a segment
 If fake descriptor points at allocated

memory, the next heap allocation will
write a HEAP_UCR_DESCRIPTOR to a
controlled address

 Assessment
 Limited control of the data written

should effectively reduce this to a
partial DWORD overwrite

 Increased complexity with multi-stage
attack requires a high degree of control
such as active scripting

Unused

Allocated Heap

UCR Descriptor

Unused

Allocated Heap

 Overflow

UCR Descriptor

Function Ptr
 0x000a1234

 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static

offset from first allocation in a segment
 If fake descriptor points at allocated

memory, the next heap allocation will
write a HEAP_UCR_DESCRIPTOR to a
controlled address

 Assessment
 Limited control of the data written

should effectively reduce this to a
partial DWORD overwrite

 Increased complexity with multi-stage
attack requires a high degree of control
such as active scripting

Unused

Allocated Heap

 Overflow

UCR Descriptor

_HEAP_UCR_DESCRIPTOR
 +0x000 ListEntry
 +0x008 SegmentEntry
 +0x010 Address
 +0x014 Size

Address points to the
next reserved region
and defines where a
HEAP_UCR_DESCRIPTOR will
be written on the next
segment allocation

Function Ptr
 0x000a1234

 Ptr
XXXX

 _LFH_BLOCK_ZONE

 Attack
 New SubSegments are created at the

location specified by the FreePointer in
the LFH_BLOCK_ZONE structure

 Control of the FreePointer allows writing
a HEAP_SUBSEGMENT to an arbitrary
location

 Allocation size and number of
allocations affect fields in the
HEAP_SUBSEGMENT structure

 Assessment
 Limited control of the data written

should effectively reduce this to a
partial DWORD overwrite

 Increased complexity attack requires a
high degree of control such as active
scripting

_LFH_BLOCK_ZONE
 +0x000 ListEntry
 +0x008 FreePointer
 +0x00c Limit

_HEAP_SUBSEGMENT
 +0x000 LocalInfo
 +0x004 UserBlocks
 +0x008 AggregateExchg
 +0x010 BlockSize
 +0x012 Flags
 +0x014 BlockCount
 +0x016 SizeIndex
 +0x017 AffinityIndex
 +0x010 Alignment
 +0x018 SFreeListEntry
 +0x01c Lock

Default exploit mitigations
on popular client
operating systems

 OS vendors have a unique opportunity to fight
memory corruption vulnerabilities through
hardening the memory manager

 Microsoft is committed to closing the gap as much
as possible and Windows Vista will have the
strongest pro-active vulnerability defense of any
Windows release

 These protections will continue to evolve to
prevent wide-spread exploitation of software
vulnerabilities

 Exploitation mitigations do not solve the problem
of software vulnerabilities, but do provide a stop-
gap during times of exposure

 Thank you for attending

 Please contact us at
switech@microsoft.com for feedback on
Microsoft’s mitigation technologies

mailto:switech@microsoft.com

	Slide 1
	Introduction
	Slide 3
	Comparing Exploitation Countermeasures
	Slide 5
	Slide 6
	Windows Exploitation Countermeasures
	Windows Vista Exploitation Countermeasures
	Address Space Layout Randomization
	The History of ASLR
	Architectural Considerations
	Vista ASLR Technical Details
	Slide 13
	Slide 14
	Testing Methodology
	Bypassing NX
	Slide 17
	Bruteforcing ASLR
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Residual Weaknesses
	Putting ASLR to Work for You
	Windows Vista Heap Allocator
	A Short Lesson in Heap Exploitation
	Slide 27
	Slide 28
	Slide 29
	Windows Vista Heap Hardening
	Slide 31
	Slide 32
	Slide 33
	Windows Vista Low-Fragmentation Heap
	Slide 35
	Windows Vista Heap Testing Methodology
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Conclusion
	Questions?

